Creating an ecosystem for VLP optimization and flow assurance for Mumbai high offshore asset.

Through hybrid models viz. Legacy models, AI/ML and collaboration tools

Nikita Mishra, Superintending Engineer (Production), Nodal Analyst – Mumbai High Asset Oil & Natural Gas Corporation, India

Drivers

DOF implementation drives the **overall asset operations** from a **reactive to a prescriptive regimen.**

Digital Oil Field serves two main objectives

 Maximize Reliability and Availability of the Facility Assets

 Improvement of Reservoir Recovery over Life of the Field (LOF)

> ओएनजीसी ्री ONGC

Schlumberger-Private

Background

Steady State or Transient

Advisory OR Closed Loop

Defining Boundaries

On Prem OR Cloud (Public/private)

The Loops

Case Brief

Both the cases belongs to biggest and oldest offshore field of India- Mumbai High

Known for is reservoir heterogeneity with majority of wells on continuous gas lift and water injection as EOR.

- Water injectors –started with installation of in-line flow instrument.
 (CAPEX intensive approach)
- Improving the accuracy of existing models

- Oil & gas producers
 – started with having an advisory system with the available instruments. (OPEX intensive approach)- IDAS (Integrated Digital Analytics System) project
- Creating an ecosystem for VLP optimization and flow assurance for mumbai high offshore asset. Through hybrid models viz. Legacy models, Al/ML and collaboration tools

Where we are

MS Office Based
Input:
Well intervention History,
well bore sketch, Major

events

Data Base

Impact on Expenditure

DOF Blocks	Low	Medium	High
Creation of real time data in well (Includes Power revamp)			CAPEX Case 1 & Case 2
Creation of real time data at surface (Includes Power revamp)	CAPEX Case 1	CAPEX Case 2	
Communication infrastructure		CAPEX + OPEX Case 1 & Case 2	
Aggregation of data	OPEX Case1 & Case2		
Analysis when modelling tools are available	OPEX Case1 & Case2		
Analysis when modelling tools are not available	CAPEX+ OPEX Case 1	CAPEX+ OPEX Case 2	
Automation of Action through remotely controlled instruments (Includes Power revamp)		CAPEX Case2	CAPEX Case1
Accessibility	CAPEX+ OPEX Case 1 & Case2		

Impact on DELAY in incremental first oil

DOF Blocks	Low	Medium	High
Creation of real time data in well			
Creation of real time data at surface			
Communication infrastructure			
Analysis when modelling tools are available			
Automation of Action through remotely controlled instruments			

Impact On Accuracy Of Developed System

DOF Blocks	Low	Medium	High
Creation of real time data in well			
Creation of real time data at surface			
Communication infrastructure			
Analysis when modelling tools are available			
Analysis when modelling tools are not available			
Automation of Action through remotely controlled instruments			

Quantifiable Value & Benefits

Analyst's work hours –

Analyst's work-hour taken for well model tuning manually and well-testing done per day in MH platforms:

Assuming 22 days working days in a month

work-hour required for tuning and validation of well models

- = 4 hours per well
- = 2 well per employee a day
- = 44 wells an employee a month.

Wells tested per day= 36 wells per day

= 1080 wells per month

So, analyst needed for well model tuning and validation= 1080/44= 25

If CTC of each average employee a year is approx. 50,000 USD.

The CTC for the same is approximately 1250000 USD per year.

Benefits Over Investment for various OIP

Assumptions-

- ☐ Increment in recovery factor = 0.5%
- ☐ API of crude = 35
- ☐ Crude Realisation for next 25 years = 80 \$/bbl
- □ DOF cost per well = 10000 \$
- Minimal presence of instrumentation and control system at well
- Benefit = OIP * increment in recovery factor* crude realisation
- □ Investment = DOF cost per well * no. of wells,
- No accounted: HSE, Logistics, Workforce, decrease in carbon emission

Conclusion: There is no Ideal strategy

Q & A

