Integrated Formation Evaluation using the Techlog Platform in a Complex Clastic Reservoir

Zhandos Zhangaziyev Petrophysicist Dragon Oil

September 13–15 Le Palais des Congrès de Paris

Agenda

- Formation evaluation with LWD / WL logging methods
- Fluid typing with Modular Dynamic Tester / NMR fluid mapping
- Well correlation in compartmentalized environment
- Pore Pressure regimes determination using OH logs
- Geomechanics / Acoustics
- Summary

Open hole logging (Logging while drilling)

Interpretation output

- CPI interpretation
 - Shale volume
 - Porosity
 - Water saturation
- Borehole image interpretation
 - (structural)
- Formation Sigma
- Spectroscopy
- Well correlation

Open hole logging (Wireline logging)

Interpretation output

- RT Scanner (anisotropy)
 - Rv, Rh / Thin bed analysis
 - Low Resistivity Pay (LRP)
- FMI Image interpretation
- MDT Formation pressure & Sampling
- MDT Downhole fluid analyzer (DFA)
- MSCT sidewall coring
- NMR fluid typing, Poro-Perm
- Acoustic measurements
- Geomechanics

Sidewall core plugs

NMR fluid map

Integrated formation evaluation using LWD & Wireline data

Difficulty of Gas vs Oil differentiation in shaly sand environment

- Challenge:
 - High clay content masks the conventional densityneutron crossover
 - Possible solutions:

Formation tester (DFA)

NMR fluid typing

PLT

GR_norm/Essains	Unkriewn A40H 0.2 ohm.m 20	RHOS 165 a/cm3 2.65 TNPH 60 pu 0 MRP	VSH_EDIAL	PHIS_NO PHIS_NO	SW_AR
0 % 100 ROPS	0.2 ohm.m 20 9284	0.6 m3/m3 0 m	VSH_FDIAL VSH_FDIAL	0.5 V/V 0- ED/_20/45	SW AR
100 m/h 0 (m) GR 11500	0.2 shm.m 25 P164 0.2 shm.m 20	165 g/cm3 265 0 TNPH 0 0 0	V/V 1	0.5 V/V 0 EFV_2M/S 0.5 m2/m3 0 PME_ND 0.5 V/V 0	1 V/V SW.WL
00	1	3		J. J.	
0H12 20	1 5	CH12 5	H12 =		CH12
30	1	2 3		Z.	
40	1	S. Jan	=	Evall Ava	
50	1	3/3	3	3	
60	1 3	23		- E	
70		3			7
90	\$			\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
00	1	1		2	
10	3	1		Ę	<u>-</u>
		3	臺	D. WA	
40	3	1		Wer way	
		3		Town Town	
50	4	15		5	→
70					

Reverse faults were identified from LWD image interpretation

- 30m drag
- Logs response (minor density and neutron, resistivity) change along fault → formation displacement along fault
- Small washout as indirect fault sign. Usually formation is damaged (can be breccia) near fault → easier to be washed out
- Pore pressure results are different in the repeat section

FMI Image interpretation

Fault interpretation (NNE-SSE strike):

- Drag (red arrow)
- Fracturing
- Tool severe sticking in washouts along fault zone possibly due to tectonic damaged rocks
- High dip angles of bed boundaries

Pore pressure regime identification

Resistivity and Sonic data have been used to generate

Drilled MW LOT EMW

MDT EMW

Acoustic processing on Techlog platform

- Compressional and Shear processing
- Shear Anisotropy analysis
- **Shear Radial** Variation Profiling
- 3D Anisotropy analysis

Summary

TECHLOG platform is used in multiple log interpretation:

- Real time LWD log interpretation
- Wireline log interpretation (Open hole and Cased hole)
- Well log correlation panel
- Formation tester analysis (pretest, DFA, sampling, VIT)
- NMR analysis
- Image interpretation (LWD density image and FMI images)
- Fault identification using OH logs and image data
- Geomechanics / Acoustics
- <u>Integration</u> of all above information provide robust understanding of the complex compartmentalized shaly-sand reservoir